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This report covers the period of February 1, 1962 to February 1,
1963. A large part of the effort during this year was devoted to
completing the research of L. J. Schrock and the writer on "Quenching
of adaptive control system response to test signal" and preparing the
results for publication. A technical report with the above title was
issued in March, 1962 to the Distribution List, and a paper with the
same title was presented to the American Institute of Electrical hh-
gineers at the AIEE Fall General Meeting, Chicago, Illinois, October
11, 1962. This paper (AIEE No. 62-1382) will be published in the
AIRE Transactions. The problem of quenching arose in a study of adap-
tive control. The theory actually applies to quenching the response
of a system to a known signal whether or not adaptive control is in-
volved. A test signal may be employed to identify the parameters of
a system to be controlled. In adaptive control this identification
is done automatically.

Unfortunately, the test signal disturbs the system, resulting in
an undesired response. This response may be of appreciable magnitude
and duration. As soon as the system is known, the response of the
system to an arbitrary input can be computed. The problem is to quench
the response to the test signal by the introduction of an appropriate
signal. The systems treated are assumed to be described by linear dif-
ferential equations with slowly varying coefficients so that these co-
efficients may be assumed to be constant during a given identification,
and subsequent quenching, period. Two cases are treated. One occurs
where the input is unbounded. In this case the quenching signal is a
linear combination of a properly weighted impulse and weighted deriv-
atives of this impulse. Such combinations may be approximated in
practice. Quenching is assumed to be optimum if the integral squared
error is a minimum.

In the second case the absolute value of the input is bounded. In
this case quenching that is optimum in every reasonable engineering sense
can be obtained. The bounded quenching signal is obtained by scheduling
the lengths of time that its value is either at the upper or lower bound.
As soon as the system is identified, quenching can be accomplished by
scheduling of the system input, regardless of the other disturbances to
which the system is subject during identification and quenching. If the
system to be identified is simple second order, that is, a double inte-
grator with gain as a parameter, and the test signal is a step input,
the quenching signal is independent of the system and depends only on
the test signal and the known bound on the input. Thus it is relatively
easy to schedule the quenching signal in this case. If the system to be
identified also involves a first order lag, the quenching signal, up to
the instant it is removed, is independent of the system parameters. The
instant of removal depends on the time constant of the system, but not
the system gain. Thus it is again relatively easy to schedule the quench-
ing signal. This signal is computed without a knowledge of system char-
acteristics until the system time constant is determined. When this time
constant is known, the shut off time is computed. Thus in the basic cases
treated, the quenching signal is independent of system gain. The physical
equipment required for quenching is simplified accordingly.
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When a controlled system has been identified, a mathematical model
of it can be constructed. In automatically adapting the controller to
the system, the characteristics of the controller are male to match those
of the system model. In using the model it is assumed that the responses
of the model and the system to the same input are identical for practical
purposes. Actually they differ, and the designer should know by how much.
The delay line synthesizer has been employed successfully for identifica-
tion. The synthesizer is based on the principle that a rational transfer
derivative operator may be represented by an infinite series, where this
series is a linear combination of pure delays, all of these delays being
positive integral multiples of a given delay. In physical applications
it is possible to work only with a finite number of terms. The closeness
with which the response of the delay line model agreen with that of the
system depends on the number of terms of the infinite series kept for the
model, and on the nature of the input. Research on this subject began
with first order systems. Substantial mathematical simplification of the
problem was achieved by writing the transfer operator as an infinite prod-
uct of linear operators. The principle investigator had previously used
the same technique to simplify the mathematics of systems with distributed
constants. By this technique it is possible to write the transfer oper-
ator of the model as a product of the transfer operator of the given sys-
tem by an operator that can be readily approximated to any desired accuracy.
The effect of the second factor on performance can be conveniently deter-
mined. The responses of the model and system to commonly occurring inputs
such as steps, sinusoids, pulses and ramps were correlated with the num-
ber of terms used in the model. These results are being extended to other
inputs and higher order systems. Experience shows that the transfer char-
acteristics of physical systems to be controlled generally can be repre-
sented by rational operators to sufficient accuracy for engineering design
purposes.

In practice, the inputs or rates of change of inputs to a controlled
system are physically bounded or limited by the designer to protect the
equipment. The problem of nonlinear control is that of obtaining the best
control subject to the bounds involved. Since in this case the controller
is generally nonlinear, such control is said to be optimum nonlinear. The
bounds are often on the absolute values of the rates of change of the in-
puts. The principal investigator treated linear systems with one controlled
variable and one controlling variable with the rate of change of the con-
trolling variable bounded. He proved that under rather general conditions
a single control function will yield optimum response to step disturbances.
This function will not give optimum or near optimum response to arbitrary
disturbances since staircase approximations to commonly occurring random
disturbances involve intervals between steps that are too short. The
situation is different if piecewise linear approximations are employed
where the slopes of the line segments are arbitrary. A disturbance is
said to be controllable if its rate of change is such that a perfect con-
troller can keep up with the disturbance and maintain the system error at
or very near zero. If the rate of change is too great this is not possible,
a system error will arise, and the disturbance is uncontrollable. Success-
ful controllers are designed so that the disturbances are largely controllable.
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Otherwise there would be continually objectionable system errors and the
controller would be relatively ineffective. In engineering practice
enough power usually is selected for the controller so that the disturb-
ances are controllable. One would then expect disturbances fluctuating
violently or rapidly from one direction to the other to be infrequent.
This is actually the case so that a disturbance may be approximated by
a piecewise linear one where near optimum control can be obtained by
using a control function chosen to give optimum response to a ramp dis-
turbance. N. P. Smith and the principal investigator obtained this
function for commonly occurring linear systems. When control with this
function was tested on an analog computer it was found that definitely
better response was obtained for arbitrary as well as ramp disturbances
than can be secured by known techniques, such as with a control function
optimum for step disturbances. This discovery led to an analytical study
of the reasons for the unexpected improvement obtained in the laboratory.

The principal investigator proved that if an uncontrollable disturb-
ance is followed by a sufficiently long controllable portion, and the
disturbance is known in advance, there is one and only one best action
of the controller that will yield a response optimum in every reasonable
engineering sense, such as minimum time to equilibrium where the system
error is zero, minimum area between the error curve and the time axis,
minimum overswing, minimum underswing, etc. A controller is said to be
near optimum if it yields approximately the same system response as if
the disturbance were known in advance. It was proved that the control
function optimum for ramps normally yields nearly optimum response to an
uncontrollable disturbance followed by a one or two segment piecewise
linear controllable section. An effort is being made to extend the proof
to an uncontrolled disturbance followed by a piecewise linear controllable
section composed of an arbitrary number of straight line segments. The
controller optimum for ramps essentially adapts itself to the rate of
change of the disturbance. ntil now optimum control studies have been
limited almost entirely to bringing a system from one state to another
while the system is undisturbed during the transition. The new approach
allows the system to be subject to an arbitrary disturbance while the
controller brings it from its initial to its final state.
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